Further Maths Revision Paper 6
This paper consists of 5 questions covering CP1, CP2, FP1 and FM1.
(AS Further Maths: Q1 and Q5)
1
Prove by induction that

$$
\sum_{r=1}^{n} \frac{r 2^{r}}{(r+2)!}=1-\frac{2^{n+1}}{(n+2)!}
$$

Show true for $n=1$

$$
\begin{aligned}
\frac{1\left(2^{1}\right)}{(3)!}=\frac{1}{3} \quad 1-\frac{2^{2}}{3!} & =1-\frac{2}{3} \\
& =\frac{1}{3}
\end{aligned}
$$

Assume true for $n=k$

$$
\sum \frac{k 2^{k}}{(k+2)!}=1-\frac{2^{k+1}}{(k+2)!}
$$

$$
\begin{aligned}
& \text { Show true for } n=k+1 \\
& \begin{aligned}
\sum \frac{k 2^{k}}{(k+2)!}+\frac{(k+1) 2^{(k+1)}}{(k+3)!} & =1-\frac{2^{k+1}}{(k+2)!}+\frac{(k+1) 2^{(k+1)}}{(k+3)!} \\
& =1-\frac{(k+3) 2^{k+1}}{(k+3)!}+\frac{(k+1) 2^{(k+1)}}{(k+3)!} \\
& =1-\frac{2^{k+1}(k+3-k-1)}{(k+3)!} \\
& =1-\frac{2^{k+2}}{(k+3)!}
\end{aligned}
\end{aligned}
$$

Since the for $n=1$, and true for $n=k$ \Rightarrow true for $n=k+1$, true $\forall k \in \mathbb{X}$

$$
\begin{aligned}
& f(x)=\ln (\cos x) \quad f(0)=0 \\
& \begin{aligned}
f^{\prime}(x) & =\frac{-\sin x}{\cos x}=-\tan x \quad f^{\prime}(0)=0 \\
f^{\prime \prime}(x) & =-\sec ^{2} x \quad f^{\prime \prime}(0)=-1 \\
f^{\prime \prime \prime}(x) & =-2 \sec x \sec x \tan x \quad f^{\prime \prime \prime}(0)=0 \\
& =-2 \sec ^{2} x \tan x \\
f^{(4)}(x) & =-2 \sec ^{2} x \sec ^{2} x-2 \sec ^{2} x \tan x \tan x \\
& =-2 \sec ^{4} x-2 \sec ^{2} x \tan ^{2} x \\
0+0 x & \frac{-1 x^{2}}{2!}+0 x^{3}-\frac{2 x^{4}}{4!} \\
& \Rightarrow \frac{-1 x^{2}}{2!}-\frac{x^{4}}{12}
\end{aligned}
\end{aligned}
$$

(a) Expand $\left(z+\frac{1}{z}\right)^{4}$
(b) Hence, by considering $\left(z+\frac{1}{z}\right)^{4}$ and $\left(z-\frac{1}{z}\right)^{4}$, with $z=\cos \theta+i \sin \theta$ show that

$$
\cos ^{4} \theta+\sin ^{4} \theta=\frac{1}{4}(\cos 4 \theta+3)
$$

a)

$$
\begin{aligned}
& z^{4}+4 z\left(\frac{1}{z}\right)^{3}+6 z^{2}\left(\frac{1}{z}\right)^{2}+4 z^{3}\left(\frac{1}{z}\right)+\frac{1}{z^{4}} \\
= & z^{4}+\frac{4}{z^{2}}+6+4 z^{2}+\frac{1}{z^{4}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& z^{4}+\frac{1}{z^{4}}+4\left(z^{2}+\frac{1}{z^{2}}\right)+6=\left(z+\frac{1}{z}\right)^{4} \\
& z^{4}+\frac{1}{z^{4}}-4\left(z^{2}+\frac{1}{z^{2}}\right)+6=\left(z-\frac{1}{z}\right)^{4} \\
& z+\frac{1}{z}=\cos \theta+i \sin \theta+\cos \theta-i \sin \theta \\
& =2 \cos \theta \\
& z-\frac{1}{z}=2 i \sin \theta \\
& \left(z+\frac{1}{z}\right)^{4}+\left(z-\frac{1}{z}\right)^{4}=16 \cos ^{4} \theta+16 \sin ^{4} \theta \\
& 2 z^{4}+\frac{2}{z^{4}}+12=16\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \\
& 4(\cos 4 \theta)+12=16\left(\cos ^{4} \theta+\sin ^{4} \theta\right) \\
& \frac{1}{4}(\cos 4 \theta+3)=\cos ^{4} \theta+\sin ^{4} \theta
\end{aligned}
$$

By means of the substitution $y=v x$ reduce the differential equator

$$
x y \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}+\sqrt{x^{2}+y^{2}}
$$

to an equation in v and x.
Find the solution, given that $y=1$ when $x=1$ in the form $y^{2}=f(x)$

$$
\begin{aligned}
& y=v x \\
& \frac{d y}{d x}=v+\frac{d v}{d x} x \\
& x(v x)\left(v+\frac{d v}{d x} x\right)=v^{2} x^{2}+\sqrt{x^{2}+v^{2} x^{2}} \\
& x^{2} v^{2}+x^{3} v \frac{d v}{d x}=v^{2} x^{2}+x \sqrt{1+v^{2}} \\
& x^{3} v \frac{d v}{d x}=x \sqrt{1+v^{2}} \\
& \int \frac{v}{\sqrt{1+v^{2}}} d v=\int \frac{1}{x^{2}} d x \\
& \begin{array}{l}
\left(1+v^{2}\right)^{1 / 2}=-x^{-1}+c \\
\left(1+\frac{y^{2}}{x^{2}}\right)^{1 / 2}=-\frac{1}{x}+c
\end{array} \\
& (1+1)^{1 / 2}=-\frac{1}{1}+c \\
& 2^{1 / 2}=-1+c \\
& c=2^{1 / 2}+1 \\
& \left(1+\frac{y^{2}}{x^{2}}\right)^{1 / 2}=-\frac{1}{x}+\sqrt{2}+1 \\
& 1+\frac{y^{2}}{x^{2}}=\left(-\frac{1}{x}+\sqrt{2}+1\right)^{2} \\
& 1+\frac{y^{2}}{x^{2}}=\frac{1}{x^{2}}-\frac{2(\sqrt{2}+1)}{x}+2 \sqrt{2}+3 \\
& \frac{y^{2}}{x^{2}}=\frac{1}{x^{2}}-\frac{2 x(\sqrt{2}+1)}{x^{2}}+2 \sqrt{2}+2 \\
& y^{2}=1-2(\sqrt{2}+1) x+2(\sqrt{2}+1) x^{2}
\end{aligned}
$$

$$
\frac{\sin \theta}{1-\cos \theta} \equiv \cot \frac{1}{2} \theta
$$

Let $t=\tan \frac{\theta}{2}$

$$
\begin{aligned}
& \sin \theta=\frac{2 t}{1+t^{2}} \\
& \cos \theta=\frac{1-t^{2}}{1-t^{2}} \\
& \frac{2 t}{1+t^{2}} \div\left(1-\frac{1-t^{2}}{1+t^{2}}\right) \\
& =\frac{2 t}{1+t^{2}} \div\left(\frac{1+t^{2}-1+t^{2}}{1+t^{2}}\right) \\
& =\frac{2 t}{1+t^{2}} \div\left(\frac{2 t^{2}}{1+t^{2}}\right) \\
& =\frac{2 t}{2 t^{2}} \\
& =\frac{1}{t}=\frac{\cot \frac{1}{2} \theta}{1}
\end{aligned}
$$

